限られた標本から母集団の平均を検定するには、母平均の区間推定同様、母分散が既知のときと、未知のときで分けられます。
<母分散が既知のとき>
1.まずは、仮説を立てます。
帰無仮説:”母平均と標本平均には差がない。”
対立仮説:”母平均と標本平均には差がある。”
2.有意水準 α を決め、そのときの正規分布の値 k を正規分布表より得る。
3.標本平均 x~ を計算。
4.検定統計量 T を計算。
⇒ T>k で帰無仮説を棄却し、対立仮説を採用。
例
|
全国共通試験で、全国平均は60点、標準偏差は10点でした。生徒数100人の進学校の平均点は75点とすると、この学校の学力は、全国平均と比較して、優れているといえるか?有意水準は0.05とする。 |
まずは仮説を立てます。 |
<母分散が未知のとき>
1.まずは、仮説を立てます。
帰無仮説:”母平均と標本平均には差がない。”
対立仮説:”母平均と標本平均には差がある。”
2.有意水準 α を決め、
データ数が多ければ(30以上)そのときの正規分布の値 k を正規分布表より得る。
データ数が少なければ(30以下)そのときの t 分布の値 k を t 分布表より得る。
3.標本平均 x~ 、不偏分散 ux2 を計算。
4.検定統計量 T を計算。
⇒ T>k で帰無仮説を棄却し、対立仮説を採用。
例
|
全国共通試験で、全国平均は60点でした。生徒数10人の進学クラスの点数は下に示すとおりでした。このクラスの学力は、全国平均と比較して、優れているといえるか?有意水準は0.05とする。 |
まずは仮説を立てます。 |